ISI BANGALORE

December 2020

DIFFERENTIAL GEOMETRY

100 Points

Notes.

(a) You may freely use any result proved in class. All other steps must be justified.

(b) \mathbb{R} = real numbers.

1. [16 points] Let p be a point on a regular curve $\gamma(t)$ in \mathbb{R}^3 with $\gamma(0) = p$. Let $\alpha(t)$ be the curve resulting from the orthogonal projection of $\gamma(t)$ to the osculating plane to $\gamma(t)$ at p. Verify that $\alpha(t)$ is also regular at t = 0 and prove that the curvatures of the two curves are equal at p.

(*Hint.* Use translation and rotation to simplify.)

2. [16 points] Suppose $\alpha(s)$ and $\beta(s)$ are two unit-speed curves in \mathbb{R}^3 through a point p with $\alpha(0) = p = \beta(0)$ and having positive torsion everywhere. If the associated binormal vectors $B_{\alpha}(s)$ and $B_{\beta}(s)$ are equal for all s, then prove that $\alpha(s) = \beta(s)$.

3. [20 points] Let $F(x, y, z) = (z + e^{y + \cos x}, y + \sin x, x^5 + x)$. Prove that $F \colon \mathbb{R}^3 \to \mathbb{R}^3$ is a diffeomorphism.

4. [24 points] Let S_1 denote the finite cylinder $x^2 + y^2 = 1, 1 < z < 2$ in \mathbb{R}^3 , S_2 the unit sphere $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 and S_3 the Mobius strip in \mathbb{R}^3 covered by suitable patches parametrized by

$$\sigma(t,\theta) = \left(\left(1 - t \sin \frac{\theta}{2} \right) \cos \theta, \ (1 - t \sin \frac{\theta}{2}) \sin \theta, \ t \cos \frac{\theta}{2} \right),$$

using |t| < 1/2, $|\theta| < \pi$ for one patch and |t| < 1/2, $0 < \theta < 2\pi$ for the other. Prove or disprove the following:

- (i) There is a diffeomorphism from S_1 to an open subset of S_2 .
- (ii) There is a diffeomorphism from S_3 to an open subset of S_2 .
- (iii) For any $p \in S_1$ and any $q \in S_2$, there is a conformal diffeomorphism from an open neighbourhood of p in S_1 to an open neighbourhood of q in S_2 .

5. [24 points] Let S be the surface of revolution obtained by rotating about the z-axis, the profile curve in the x-z plane given by $(x-2)^2 + (z/2)^2 = 1$.

- (i) Calculate the first and second fundamental forms, the Weingarten matrix, the principal normal curvatures and the Gaussian curvature at all the points of S.
- (ii) At $p = (2, 0, 2) \in S$, find the normal curvatures of S along the unit tangent vector $w = (\cos \theta, \sin \theta, 0)$.